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Abstract Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate 23 

spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is 24 

particularly challenging in heterogeneous regions such as the northern forests of the United 25 

States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest 26 

region of northern Wisconsin and Michigan and upscale flux observations from towers to the 27 

regional scale. This region is densely instrumented and provides a unique test-bed for regional 28 

upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux 29 

observations and a data assimilation approach to estimate the model parameters. We then use the 30 

optimized model to produce gridded flux estimates across the region. We find that model 31 

parameters vary not only across plant functional types (PFT) but also within a given PFT. Our 32 

results show that the parameter estimates from a single site are not representative of the 33 

parameter values of a given PFT; cross-site (or joint) optimization using observations from 34 

multiple sites encompassing a range of site and climate conditions considerably improve the 35 

representativeness and robustness of parameter estimates. Parameter variability within a PFT can 36 

result in substantial variability in regional flux estimates. We also find that land cover 37 

representation including land cover heterogeneity and the spatial resolution and accuracy of land 38 

cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, 39 

complex regions, detailed and accurate land cover maps are essential for accurate estimation of 40 

regional fluxes.  41 

 42 

 43 

 44 

 45 
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1. Introduction   46 

Terrestrial ecosystems play an important role in regulating atmospheric carbon dioxide 47 

(CO2) concentrations and the climate. Net ecosystem carbon exchange (NEE), the difference 48 

between photosynthetic uptake and release of CO2 by respiration from autotrophs (plants) and 49 

heterotrophs (e.g., microbial decomposition), represents the net exchange of CO2 between 50 

terrestrial ecosystems and the atmosphere. Quantifying NEE over regions can improve our 51 

understanding of the feedbacks between the terrestrial biosphere and the atmosphere.  52 

Several techniques have been used to estimate NEE. Atmospheric inversions [e.g., Butler 53 

et al., 2010], ecosystem models [e.g., Xiao et al., 2009], and inventory approaches [e.g., SOCCR, 54 

2007] have been used to infer net exchange of CO2 and provide aggregated information on NEE 55 

over large areas during the past two decades. The eddy covariance technique provides an 56 

alternative approach to estimate NEE. Eddy flux measurements of carbon fluxes are based on the 57 

covariance of high frequency fluctuations in vertical velocity and CO2 concentration [Baldocchi 58 

et al., 1988].  Eddy covariance flux towers provide continuous measurements of ecosystem-level 59 

CO2 exchange. However, these measurements only represent the fluxes from the scale of the 60 

tower footprint with longitudinal dimensions ranging between a hundred meters and several 61 

kilometers [Schmid, 1994]. To quantify the net exchange of CO2 between the terrestrial 62 

biosphere and the atmosphere, we need to upscale these observations from towers to regions 63 

[Davis, 2008; Xiao et al., 2008].  64 

Significant progress has been made in upscaling flux observations from towers to 65 

regional or continental scales during the last several years. Several different approaches have 66 

been used for the upscaling of eddy flux observations, including machine learning approaches 67 

[e.g., Xiao et al., 2008; Jung et al., 2009; Zhang et al., 2011], light use efficiency models [e.g., 68 
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Mahadevan et al., 2008; Cook et al., 2009], and empirical or process-based ecosystem models 69 

[e.g., Sun et al., 2011]. Some of these studies have produced continuous flux fields and examined 70 

the terrestrial carbon dynamics over broad regions [e.g., Xiao et al., 2010, 2011]. Significant 71 

uncertainty remains, however, regarding the impacts of parameter variability and land cover 72 

representation in regional upscaling. 73 

Plant functional type (PFT) is a key factor controlling terrestrial carbon fluxes. Many 74 

empirical and process-based diagnostic models simulate carbon fluxes of mature ecosystems. 75 

These models often use data from a single site to estimate the parameters of a given PFT. In 76 

reality, however, stands within a PFT have a range of stand age, disturbance history, and 77 

aboveground biomass. A single site may not represent the full range of stands within a PFT, and 78 

this type of model parameterization or parameter estimation may lead to significant uncertainties 79 

in the resulting flux estimates. Land cover is another key determinant of terrestrial carbon fluxes 80 

and is highly dependent on climate and human activities [Hurtt et al., 2002; Foley et al., 2005]. 81 

Land-cover maps used in carbon cycle modeling are largely based on satellite data, and the 82 

properties and limitations of these maps will lead to flux uncertainties [Reich et al., 1999; Quaife 83 

et al., 2008]. Few studies have examined the impacts of parameter variability and land cover 84 

representation on regional flux estimates. 85 

The Upper Midwest region of northern Wisconsin and Michigan, USA, is a highly 86 

heterogeneous mixture of upland forests and lowland wetlands (Figure 1). This region is densely 87 

instrumented with eddy covariance flux towers as a result of the Chequamegon Ecosystem-88 

Atmosphere Study (ChEAS). The ChEAS began with flux tower measurements collected at the 89 

WLEF tall tower [Davis et al., 2003]. Since 1998, eddy flux tower systems have been deployed 90 

at 16 different sites spanning a range of ecosystem types and stand ages, in addition to the WLEF 91 
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tall tower [Cook et al., 2004; Desai et al., 2005, 2008; Gough et al., 2008; Noormets et al., 2008; 92 

Sulman et la., 2010]. The high density of sites covering most of the land cover types in the 93 

region makes the ChEAS region a unique test-bed for the development and testing of the 94 

inferences and assumptions needed to diagnose and predict ecosystem carbon exchange at 95 

regional scales [Chen et al., 2008]. 96 

We used the ChEAS array of eddy covariance measurements, a simple diagnostic NEE 97 

model, and a data assimilation approach to produce gridded flux estimates at the regional scale. 98 

The objectives of this study are to (1) develop a simple Diagnostic Carbon Flux Model (DCFM) 99 

that integrates eddy covariance flux measurements, satellite observations, and climate data; (2) 100 

estimate model parameters using flux observations and a data assimilation approach; (3) produce 101 

continuous flux estimates across the region; and (4) assess the impacts of uncertainties of 102 

parameter variability and land cover representation on regional flux estimates. We hypothesize 103 

that (1) model parameters vary not only across PFTs but also within a given PFT, suggesting that 104 

multiple flux towers improve characterization of a PFT; and (2) land cover representation such as 105 

land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to 106 

significant uncertainties in regional flux estimates. 107 

2. Data 108 

2.1. Study Region and Site Descriptions 109 

The Upper Midwest region of northern Wisconsin and Michigan, USA (Figure 1) is an 110 

area of temperate/sub-boreal forests and glaciated landforms with many small glacial lakes and 111 

wetlands. The majority of upland forests consist of mature northern hardwood forests (e.g., 112 

maple, basswood, birch, and ash) and younger fast-growing aspen (Populus termulouides) forests; 113 

coniferous species include red pine, jack pine, eastern hemlock and white pine forests cover 114 
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smaller areas [Desai et al., 2008]. Around 1/3 of the region is lowland wetlands, including 115 

forested wetlands (e.g., black spruce, white cedar or tamarack), shrub wetlands (alder or willow 116 

species), and open meadows [Desai et al., 2008].  117 

We used 17 eddy flux sites across the region (Table 1; Figure 1): the 447m Park 118 

Falls/WLEF-TV tall tower [Davis et al., 2003; Ricciuto et al., 2008], three other AmeriFlux 119 

towers (Sylvania Wilderness Area, Desai et al., 2005; Lost Creek, Sulman et al., 2010; and 120 

Willow Creek, Cook et al., 2004), 4 “roving” towers where flux instruments were shared 121 

between pairs of sites for a 2-year field campaign (2 herbaceous wetland and 2 young aspen), all 122 

located in the Medford-Park Falls district of the Chequamegon-Nicolet National Forest in North-123 

Central Wisconsin, seven upland chronosequence sites in the Washburn District of the 124 

Chequamegon-Nicollet National Forest in North-western Wisconsin and an additional pine 125 

barrens site in the Upper Peninsula of Michigan [e.g., Noormets et al., 2008], and the University 126 

of Michigan Biological Station’s AmeriFlux tower (UMBS) in the northern portion of the lower 127 

Michigan [e.g., Gough et al., 2008; Su et al., 2008]. These 17 sites were grouped into the 128 

following PFTs: evergreen forests (EF, 5 sites), deciduous forests (DF, 5 sites), mixed forests 129 

(MF, 3 sites), shrublands (Sh, 1 site), woody wetlands (WW, 1 site), and herbaceous wetlands 130 

(HW, 2 sites) (Table 1).  131 

2.2. Eddy Flux Observations 132 

We used the half-hourly data from the AmeriFlux Level 4 product for all sites (Table 1) 133 

except the roving towers: Riley Creek (RC), Thunder Creek (TC), Wilson Flowage (WF), and 134 

South Fork (SF). A negative sign denotes carbon uptake, and a positive sign denotes carbon 135 

release. We aggregated the gap-filled half-hourly NEE and climate data to daily values. Only 136 

days with no less than 75% of original half-hourly measurements were used in our analysis.  137 
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For the roving towers, we used the mean diurnal variation (MDV) method [Falge et al., 138 

2001] to fill data gaps and then aggregated the half-hourly data to daily values. In this method, a 139 

missing observation is replaced by the mean of observations for that time interval (half-hour) 140 

from adjacent days. A window size of 8 days was chosen for averaging in this study. We used 141 

the MDV method because of its simplicity and consistent performance [Moffat et al., 2007]. In 142 

addition, we only used days with no less than 75% of good half-hourly measurements, which 143 

minimized the effects of gap-filling.  144 

2.3. MODIS Data 145 

We used the vegetation indices (MOD13A2) [Huete et al., 2002] and surface reflectance 146 

(MOD09A1) [Vermote and Vermeulen, 1999] products derived from MODIS observations. For 147 

each eddy flux site, we obtained MODIS ASCII subsets (Collection 5) for both products from the 148 

Oak Ridge National Laboratory’s Distributed Active Archive Center (ORNL DAAC). The 149 

MODIS ASCII subsets consist of 7 km × 7 km regions centered on the flux tower. For each 150 

variable, we extracted average values for the central 3 × 3 km area within the 7 × 7 km cutouts to 151 

better represent the flux tower footprint [Xiao et al., 2008].  152 

For the entire ChEAS region, we obtained MODIS surface reflectance (MOD09A1) and 153 

vegetation indices (MOD13A2) from the Earth Observing System (EOS) Data Gateway for each 154 

8-day interval over the period 2000-2007. For each variable, we determined the quality of the 155 

value of each pixel within the area using the quality assurance (QA) flags included in the 156 

products [Xiao et al., 2008], and replaced the bad value using a linear interpolation approach 157 

[Zhao et al., 2005].  158 

2.4. Land Cover Maps 159 
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To examine the influence of land cover representation on regional flux estimates, we used 160 

land cover maps with different spatial resolution and from two different sources. The ChEAS 161 

region is characterized by heterogeneous landscapes, and the dominant scale for landscape 162 

variability is about a few hundred meters. We used the NLCD (National Land Cover Dataset) 163 

2001 land cover map [Homer et al., 2004] with 30m resolution (Figure 2a) as the main land 164 

cover map for the study, and this land cover map is referred to as 30m-NLCD hereafter. We also 165 

aggregated the 30m land cover map to 1km spatial resolution (Figure 2b) by selecting the 166 

dominant PFT for each 1km cell, and the resulting 1km NLCD land cover map is referred to as 167 

1km-NLCD. These two maps exhibited significant differences in the areas of PFTs (Figure 2d). 168 

For instance, the areas of deciduous forests on 1km-NLCD is 31.8% higher than that of 30m-169 

NLCD, while the area of mixed forests is 60.5% lower than that of 30m-NLCD. 170 

We also used the 1km MODIS land cover map (Figure 2c) with the IGBP (International 171 

Geosphere-Biosphere Programme) classification scheme [Friedl et al., 2002]. This land cover 172 

map is referred to as 1km-MODIS hereafter. The MODIS land cover map was derived from 173 

moderate-resolution MODIS data and a global land cover classification algorithm. The NLCD 174 

and MODIS land cover maps were used to examine how regional flux estimates are influenced 175 

by the classification accuracy and spatial resolution of land cover maps and land cover 176 

heterogeneity. We used the following PFTs for all land cover maps: evergreen forests, deciduous 177 

forests, mixed forests, shrublands, woody wetlands, and herbaceous wetlands. 178 

The NLCD and MODIS land cover maps exhibited considerable differences in the 179 

distribution and areas of PFTs (Figure 2). The dominant PFT of NLCD maps is deciduous forests, 180 

while the dominant PFT of 1km-MODIS is mixed forests. 1km-MODIS shows that wetlands 181 

only account for a negligible portion (~0.01%) of the region, while the NLCD land cover maps 182 
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show that nearly 1/3 of the vegetated area is wetlands, mainly woody wetlands. Most mixed 183 

forests on 1km-MODIS are classified as woody wetlands on the NLCD maps. In addition, 1km-184 

MODIS shows only 620 km
2
 of evergreen forests, while both NLCD land cover maps show 185 

nearly 10,000 km
2
 of evergreen forests. 186 

2.5. Climate Data 187 

We obtained daily air temperature data from the NCEP/NCAR Reanalysis data set (~2.5 188 

degree resolution) [Kalnay et al., 1996]. The NCEP/NCAR reanalysis project dataset was created 189 

by assimilating climate observations from a wide variety of sources, such as weather stations, 190 

ships, aircrafts, and satellites. We also used daily 0.5° resolution PAR data from the Surface 191 

Radiation Budget (SRB) project, as generated by the National Oceanic and Atmospheric 192 

Administration (NOAA), National Environmental Satellite, Data and Information Service 193 

(NESDIS) [Pinker et al., 2002]. The surface radiation fluxes were derived from Geostationary 194 

Operational Environmental Satellites (GOES).  195 

2.6. Independent Flux Estimates 196 

We used independent regional flux estimates for comparison purposes. We obtained the 197 

MODIS GPP product (MOD17A3) [Running et al., 2004; Zhao et al, 2005]. This product is 198 

based on a light use efficiency model driven by MODIS and meteorological data. It provides 199 

GPP estimates at a spatial resolution of 1km at the global scale. We obtained MODIS GPP data 200 

for the ChEAS region over the period 2001-2006.  201 

We also used the EC-MOD flux fields derived from eddy covariance (EC) flux 202 

measurements and MODIS data [Xiao et al., 2008, 2010, 2011]. EC-MOD consists of continuous 203 

GPP and NEE estimates with 1km spatial resolution and 8-day time step for the conterminous 204 

U.S. over the period 2000-2006. EC-MOD was developed from flux observations from 42 eddy 205 
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covariance flux towers encompassing a wide range of ecosystem and climate types and wall-to-206 

wall MODIS data streams using a data-driven approach [Xiao et al., 2008, 2010]. We calculated 207 

annual GPP and NEE from 8-day EC-MOD flux estimates for the ChEAS region over the period 208 

2001-2006.  209 

3. Methods  210 

3.1. Model Framework 211 

We developed a simple Diagnostic Carbon Flux Model (DCFM) for the estimation of 212 

NEE. In our model, NEE is the difference of two carbon fluxes – gross primary productivity 213 

(GPP) and ecosystem respiration (Re): 214 

                        
ss

TWfPARPARNEE ××××−= maxε  215 

                                
))/(1)/(1(' 000)(

TTTTE

ref

refeGPPAGBR
−−−

××+×++ λγ
                                       (1)

 216 

where εmax is the maximum light use efficiency (LUE) (g C m
-2

 MJ
-1

 APAR), PAR is the incident 217 

photosynthetically active radiation (MJ m
-2

) per time period (e.g., day or month), fPAR is the 218 

fraction of PAR absorbed by vegetation canopies, Ws is the water scalar, Ts is the temperature 219 

scalar, 
'

refR  is a parameter associated with the rate of respiration at the reference temperature, Tref 220 

is the reference temperature, E0 is an activation energy parameter that determines the temperature 221 

sensitivity, and T0 is a constant regression parameter. Ws and Ts represent the limiting effects of 222 

water availability and temperature on GPP, respectively, and both scalars vary from 0 to 1. Tref is 223 

set to 10°C, and T0 is kept constant at -46.02°C as in Lloyd & Taylor [1994]. Negative NEE 224 

values denote carbon uptake, while positive values denote carbon release to the atmosphere. 225 

We used a LUE approach to estimate GPP. The LUE or “radiation use efficiency” logic is 226 

one of the most frequently applied concepts for modeling GPP [e.g., Prince and Goward, 1995; 227 

Ruimy et al., 1996; Landsbert and Waring, 1997; Veroustraete et al., 2002; Running et al., 2004; 228 
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Xiao et al., 2004; Cook et al., 2009; Mahadevan et al., 2008]. This logic was first proposed by 229 

Monteith [1972, 1977], suggesting that the NPP of well-watered and fertilized annual crop plants 230 

was linearly related to the amount of absorbed photosynthetically active solar radiation (PAR).  231 

We used enhanced vegetation index (EVI) to approximate fPAR. EVI is calculated as 232 

[Huete et al., 1997]: 233 

                        
1)5.76(

5.2
+−+

−
=

bluerednir

rednirEVI
ρρρ

ρρ
                                                      (2) 234 

where redρ , nirρ , and blueρ  are the visible-red, near-infrared, and blue reflectance, respectively. 235 

A linear transformation of EVI was used to approximate fPAR: 236 

                  EVIfPAR ×+= βα                                              (3) 237 

where α and β are empirical constants.  238 

We used the normalized difference water index (NDWI) [Gao, 1996] to calculate Ws. 239 

Gao [1996] developed the NDWI from satellite data to measure vegetation liquid water. The 240 

NDWI was shown to be strongly correlated with leaf water content [Jackson et al., 2004] and soil 241 

moisture [Fensholt and Sandholt, 2003] over time. Ws is calculated as [Xiao et al., 2004]: 242 

                 
max1

1

NDWI

NDWI
Ws

+

+
=                                                                    (4) 243 

where maxNDWI  is the maximum NDWI for each individual site or pixel over the period that 244 

MODIS data are available. NDWI and Ws were calculated using band 2 and band 6 of the 245 

MODIS surface reflectance product.  246 

We used the temperature scalar implemented in the Terrestrial Ecosystem Model (TEM) 247 

[Tian et al., 1999; Xiao et al., 2009]: 248 
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where T  is the mean air temperature (C), Tmin and Tmax are the maximum and minimum 250 

constraints for GPP, and Topt,min and Topt,max represent the range of temperature for optimal carbon 251 

uptake. Tmin, Tmax, Topt,min and Topt,max values were obtained from TEM (Table 2).  252 

Ecosystem respiration (Re) has been widely modeled as an exponential function of either 253 

air or soil temperature (T) [Lloyd and Taylor, 1994]:  254 

                 
))/(1)/(1( 000 TTTTE

refe

refeRR
−−−

=                                                          (6) 255 

where Rref is the rate of respiration at the reference temperature. This exponential function, 256 

however, could not explain the variability of carbon pools within a PFT. Autotrophic respiration 257 

can be empirically modeled as a function of air temperature and tissue carbon [Tian et al. 1999; 258 

Xiao et al., 2009]. Plant respiration is also a relatively constant proportion of GPP [Chapin et al., 259 

2002]. In our NEE model, we modified this function for the estimation of Re by including 260 

aboveground biomass and GPP as explanatory variables (equation 1). The rate of respiration at 261 

the reference temperature in our model is GPPAGBRref ×+×+ λγ'
. 262 

Several lines of evidence showed that vegetation indices integrated over the growing 263 

season exhibited moderate to strong relationships with aboveground biomass for a variety of 264 

PFTs, such as forests [e.g., Myneni et al., 2001], grasslands [e.g., Tucker et al., 1985], crops [e.g., 265 

Persson et al., 1993], and tundra [e.g., Boelman et al., 2003]. We used integrated EVI over the 266 
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growing season as a proxy for aboveground biomass so that we could produce flux estimates for 267 

the entire study region. 268 

DCFM is run using a daily time step. The choice of this simple model structure was 269 

motivated by the ability to evaluate the variability of parameters both within and across PFTs 270 

using a high density and range of eddy flux observations and global optimization methods. This 271 

simple diagnostic model does not require a detailed mechanistic understanding of complex 272 

ecosystem processes, and thus can be easily optimized using eddy flux measurements. We used 273 

the following broad PFTs: evergreen forests, deciduous forests, mixed forests, shrublands, 274 

woody wetlands, and herbaceous wetlands. Mixed forests are treated as a PFT here as this 275 

vegetation type is the dominant land cover type for the MODIS land cover map.  276 

Disturbance is an important factor controlling the sizes of forest carbon pools and the 277 

quantity of litterfall. The legacy of disturbance thus affects heterotrophic respiration of forest 278 

ecosystems. In our simple diagnostic model, we use aboveground biomass to account for the 279 

spatial variability of respiration over space within a given PFT. However, aboveground biomass 280 

cannot account for the pools of litterfall and soil carbon. We thus conducted an experiment by 281 

adding stand age as an additional variable for the estimation of Re to examine the effects of 282 

disturbance legacy on the estimation of Re and NEE. For forests, the modified model for this 283 

experiment can be written as: 284 

     ss
TWfPARPARNEE ××××−= maxε  285 

                                
))/(1)/(1(' 000)(

TTTTE

ref

refeGPPAgeAGBR
−−−

××+×+×++ λδγ
                    (7) 

286 

where Age is stand age in years. This modified model was only used to examine whether the 287 

addition of stand age can improve the performance of the model. 288 

3.2. Parameter Estimation 289 
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We used the differential evolution (DE) algorithm [Price et al., 2006] to estimate the 290 

parameters of DCFM. DE is a stochastic, population-based optimization algorithm. One key 291 

advantage of DE is that it seeks the global minimum of a multidimensional and multimodal (i.e., 292 

exhibiting more than one minimum) function relatively fast and with high reliability. We used 293 

the DEoptim package [Ardia, 2009] implemented in the R statistical package. DEoptim is a R-294 

vectorized variant of the DE algorithm.  295 

In this analysis, 7 parameters (εmax, α, β, Rref, γ, λ, and E0) were allowed to vary in 296 

parameter estimation. The lower and upper bounds of εmax were determined from the range of 297 

εmax (0.39 – 2.75 g C m MJ
-1

 APAR) used in LUE models (Prince and Goward, 1995; Ruimy et 298 

al., 1996; Landsbert and Waring, 1997; Veroustraete et al., 2002; Xiao et al., 2004; Potter et al., 299 

2007). The initial ranges of α and β for the approximation using EVI here were specified as [-0.5, 300 

-0.3] and [1.5, 1.85], respectively. The bounds of other parameters were largely based on 301 

conventional knowledge of their possible values. The initial range of γ was specified as -1.0 – 302 

1.0 g C m
-2

 day
-1

. λ is dimensionless, and its initial range was specified as [-1.0, 1.0]. We 303 

specified the initial range of E0 as 0 – 500 °C. 
'

refR
 
is nonnegative, and was assigned the range 0 304 

– 20 g C m
-2

 day
-1

.  305 

For each PFT, we conducted cross-site (or joint) optimization using eddy flux 306 

observations from all sites within the PFT. The resulting model parameters were used for the 307 

estimation of regional carbon fluxes. We also conducted leave-one-out model optimization for 308 

each forest PFT to examine the performance of the model and to examine how model parameters 309 

vary across sites within a PFT. For each PFT, one site was excluded at a time and data from all 310 

other sites within the PFT were used to estimate the parameters. 311 



15 

 

Similarly, we used DE to estimate the parameters of the modified model accounting for 312 

disturbance effects (equation 7). We examined whether the addition of stand age can improve the 313 

performance of the model. This modified model was not applied to the region to create regional 314 

flux estimates because there is no spatially explicit information on stand age available for the 315 

region to date. 316 

3.3. Regional Flux Prediction 317 

 We applied the optimized model to the study region to produce regional flux estimates. 318 

To reduce the computational complexity of the spatial prediction, the 30m-NLCD (Figure 2a) 319 

was downgraded to 1km spatial resolution. For each 1km cell, the percent cover of each PFT was 320 

calculated. Carbon fluxes were estimated for each PFT within each 1km cell, and total fluxes for 321 

each cell were calculated by summing up the fluxes for different PFTs weighted by their percent 322 

cover. We produced continuous estimates of carbon fluxes with 1km spatial resolution and daily 323 

time step for the period 2001-2007.  324 

 To examine the influence of land cover representation on regional flux estimates, we also 325 

used 1km-NLCD (Figure 2b) and 1km-MODIS (Figure 2c) to specify the PFT of each pixel and 326 

produce continuous estimates of carbon fluxes for the region, respectively. We then examined 327 

how land cover representation including land cover heterogeneity and the spatial resolution and 328 

accuracy of land cover maps affect regional flux estimates.  329 

 To examine the influence of parameter variability on regional flux estimates, we also 330 

used parameter estimates resulting from leave-one-out model optimizations to produce regional 331 

estimates of carbon fluxes. That is, we estimated model parameters for each PFT multiple times 332 

by removing one site at a time from the collection of flux towers within that PFT, and then 333 



16 

 

conducted multiple model simulations for evergreen forests, deciduous forests, and mixed forests 334 

using the multiple sets of parameter values.   335 

4. Results 336 

4.1. Parameter Estimation and Variability  337 

The estimated parameter values are given in Table 3. The parameter behaviors generally 338 

fell into two categories: well-constrained or edge-hitting. Well-constrained parameters exhibited 339 

optimal values within the range of their initial values. All parameters for mixed forests, 340 

shrublands, and woody wetlands and most parameters for other PFTs fell into this category. 341 

Three parameters, γ, λ, and E0, were well constrained for all PFTs. The remaining parameters, 342 

εmax, α, β, and 
'

refR , however, hit the edge of their prior ranges for some PFTs. This means that 343 

the estimated values were equal to one of the edges of their initial ranges, either the lower or 344 

upper bounds. For example, the optimized values of εmax for evergreen forests and herbaceous 345 

wetlands were equal to the upper bounds of the initial values; 
'

refR  of deciduous forests and 346 

herbaceous wetlands exhibited values equal to the lower bounds of their initial values. When 347 

edge-hitting occurred, widening the range on the edge-hit side within reasonable bounds did not 348 

lead to well-constrained parameters but simply shift the estimated value in that direction. 349 

The estimated values of α and β were relatively consistent among PFTs. The slope of the 350 

fPAR-EVI relationship, β, was around 1.8. Most parameters, however, varied substantially with 351 

PFT. For example, the estimated value of εmax of mixed forests was generally much lower than 352 

those of evergreen forests and deciduous forests. Our results showed that εmax converged within 353 

our prior bounds for deciduous forests, mixed forests, shrublands, and woody wetlands, and hit 354 

the upper bound for evergreen forests and herbaceous wetlands. The estimated value of 
'

refR  355 

varied with PFT, and this parameter hit the lower bounds for deciduous forests and herbaceous 356 
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wetlands. The parameter γ converged within bounds for all PFTs and exhibited negative values 357 

for all PFTs except deciduous forests and herbaceous wetlands. The parameter λ also converged 358 

within bounds for all PFTs. λ exhibited positive values for all PFTs except mixed forests. The 359 

activation energy parameter, E0, exhibited a large range across PFTs and was within bounds for 360 

all PFTs.  361 

The leave-one-out model optimization showed that parameter values varied not only 362 

across PFTs but also across sites within a given PFT (Table 4). For each PFT, one site was 363 

excluded at a time and data from all other sites within the PFT were used to estimate the 364 

parameters; the optimized model was then used to predict NEE for the site excluded. The R
2
 of 365 

the leave-one-out verifications of evergreen forests varied between 0.48 and 0.66 except the 366 

parameter estimation with Intermediate Red Pine (IRP) excluded. The verification for mixed 367 

forests also exhibited intermediate correlations with R
2
 between 0.37 and 0.55. The R

2
 for 368 

deciduous forests, however, showed larger variability (0 to 0.66). Within a given PFT, most 369 

parameters were generally consistent among leave-one-out optimizations; some parameters, 370 

however, varied substantially with optimization. For example, the estimated value of εmax with 371 

Mature Red Pine (MRP) site excluded was much lower than that of any other leave-one-out 372 

optimization within evergreen forests; the estimated value of εmax with Willow Creek (WC) 373 

excluded was much lower than that of any other optimization within deciduous forests. Mixed 374 

forests exhibited the least within-PFT variability in εmax. The two parameters α and β generally 375 

exhibited little within-PFT variability, and had consistent values among leave-one-out 376 

optimizations.  377 

To examine the effects of disturbance on parameter estimation and flux estimation, we 378 

included stand age as an additional variable for the prediction of ecosystem respiration (equation 379 
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7). Similarly, we estimated the parameters of this modified model using DE. The addition of 380 

stand age improved the performance of the model for estimating NEE for deciduous forests and 381 

evergreen forests. For evergreen forests, the inclusion of stand age increased R
2
 from 0.45 to 382 

0.69 and reduced the root mean squared error (RMSE) by 23.3%. For deciduous forests, the 383 

addition of stand age increased R
2
 from 0.61 to 0.65 and reduced RMSE by 6.0%. For mixed 384 

forests, however, the modified model did not significantly improve the model performance, and 385 

both the increase in R
2
 and the reduction in RMSE were negligible.  386 

4.2. Influence of Parameter Variability and Land Cover Representation on Regional Flux 387 

Estimates 388 

We produced daily flux estimates across the region for the period 2001-2007 using 30m-389 

NLCD to specify the PFTs and percent cover within each cell, and then calculated annual GPP 390 

and NEE for each year. Figure 3 shows mean annual GPP and NEE over the 7-year period. 391 

Annual GPP varied substantially over space across the Northern Forests ecoregion. The northern 392 

portion of northern Wisconsin and Upper Peninsula of Michigan and some areas in the central 393 

and southern part of the region and Lower Peninsula of Michigan exhibited high annual GPP, 394 

while the remaining region showed relatively low to moderate annual GPP. Mean annual NEE 395 

also varied substantially over space. The northern portion of Wisconsin and Upper Peninsula of 396 

Michigan absorbed carbon, while areas along the border between Wisconsin and Upper 397 

Michigan and central Lower Michigan released carbon into the atmosphere; the remaining part 398 

of the study region was nearly carbon neutral.  399 

We compared our mean annual GPP with estimates derived from MODIS GPP product 400 

and EC-MOD over the period 2001-2006 (Figure 4). MODIS GPP exhibited much less spatial 401 

variability than our estimate and EC-MOD. The spatial patterns of our estimate and EC-MOD 402 
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GPP were generally similar to each other. For deciduous and evergreen forests, our estimate had 403 

slightly higher GPP than EC-MOD; for mixed forests and other PFTs, our estimate had lower 404 

GPP than EC-MOD. We also compared our annual NEE with EC-MOD NEE (Figure 5). Similar 405 

to GPP, the spatial patterns of annual NEE generally agreed with each other. In the North of the 406 

study region, both estimates exhibited large carbon uptake with annual NEE of approximately -407 

300 g C m
-2

 yr
-1

. In the southern portion of the region, however, our estimate showed that 408 

ecosystems were nearly carbon neutral, while EC-MOD showed large carbon uptake with annual 409 

NEE of approximately -300 g C m
-2

 yr
-1

. Both estimates showed that other areas were nearly 410 

carbon neutral or released carbon into the atmosphere.  411 

We calculated the total annual GPP and NEE of the entire region and total annual fluxes 412 

for each PFT (Figure 6). Total annual GPP over the ChEAS region was estimated to be 120.3 Tg 413 

C yr
-1

, which was largely contributed by deciduous (57.5%) and evergreen forests (17.7%). 414 

Woody wetlands had intermediate GPP (16.7 Tg C yr
-1

), and the remaining PFTs (mixed forests, 415 

shrublands, and herbaceous wetlands) accounted for 10.9% of the regional GPP. The regional 416 

annual NEE was estimated to be -9.8 Tg C yr
-1

. Similar to annual GPP, annual NEE also varied 417 

substantially with PFT. Deciduous forests had the highest net carbon uptake, followed by 418 

shrublands and evergreen forests.  419 

To examine the impacts of land cover representation on regional flux estimates, we also 420 

produced regional estimates of carbon fluxes over the period 2001-2007 using 1km-NLCD and 421 

1km-MODIS to specify the PFT of each cell. The differences in land cover representation among 422 

these land cover maps resulted in significant differences in regional flux estimates (Figure 6). 423 

The carbon fluxes integrated over the region based on 1km-NLCD were different from those 424 

from 30m-NLCD (Figure 6). For deciduous forests, for example, annual GPP of 1km-NLCD was 425 
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36.2% higher than that of 30m-NLCD; similarly, in absolute magnitude, annual NEE of 1km-426 

NLCD was 36.7% higher than that of 30m-NLCD. Integrated across all PFTs over the region, 427 

1km-NLCD led to significantly higher annual GPP (11.3%) and NEE (23.9% in absolute 428 

magnitude) than 30m-NLCD. 429 

The carbon fluxes integrated over the region based on 1km-MODIS were substantially 430 

different from those from the NLCD land cover maps (Figure 6). For deciduous forests, the 431 

annual GPP based on 1km-MODIS was 51.2% and 33.6% lower than those of 30m-NLCD and 432 

1km-NLCD, respectively; the annual NEE based on 1km-MODIS was 46.5% and 26.8% lower 433 

than those of 30m-NLCD and 1km-NLCD, respectively. For mixed forests, annual GPP resulting 434 

from 1km-MODIS was 31.0 Tg C yr
-1

, while the annual GPP based on 30m-NLCD and 1km-435 

NLCD were only 5.1 and 2.0 Tg C yr
-1

, respectively. Integrated across PFTs over the region, the 436 

annual GPP based on 1km-MODIS was 41.9% and 35.5% lower than those of 30m-NLCD and 437 

1km-NLCD, respectively; the annual NEE of 1km-MODIS was 61.9% and 71.0% lower than 438 

those of 30m-NLCD and 1km-NLCD, respectively.  439 

We also examined the impacts of parameter variability on regional flux estimates for 440 

evergreen forests, deciduous forests, and mixed forests (Figure 7) by conducting model runs 441 

using parameter sets resulting from leave-one-out model optimizations (Table 4). The three land 442 

cover maps were also used for each model run to further examine the impacts of land cover 443 

representation on regional flux estimates. For evergreen forests, the 5 model runs resulting from 444 

leave-one-out model optimizations exhibited large variability in annual GPP with a standard 445 

deviation of 19.4 and 14.8 Tg C yr
-1

 for 30m-NLCD and 1km-NLCD, respectively; the model 446 

runs also showed large variability in annual NEE with a standard deviation of 1.4 and 0.5 Tg C 447 

yr
-1

 for 30m-NLCD and 1km-NLCD, respectively, and little variability in GPP and larger 448 
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variability in NEE for 1km-MODIS (Figure 7a,b). For each PFT, the mean annual fluxes of these 449 

model runs, however, were very close to the annual fluxes based on the cross-site (or joint) 450 

optimization using flux observations from all the sites within the PFT. For deciduous forests, the 451 

model runs also exhibited large variability in annual fluxes for each land cover map, while the 452 

mean annual fluxes of these model runs had larger differences from fluxes based on the cross-453 

site optimization using flux observations from all sites (Figure 7c,d). For mixed forests, the 454 

model runs showed little variability in annual fluxes for both 30m-NLCD and 1km-NLCD and 455 

large variability in annual NEE for 1km-MODIS.  456 

5. Discussion 457 

5.1. Parameter Estimation and Variability 458 

Eddy covariance flux observations are increasingly used to estimate the parameters of 459 

carbon cycle models [e.g., Braswell et al., 2005; Knorr and Kattge, 2005; Mahadevan et al., 2008; 460 

Mo et al., 2008; Ricciuto et al., 2008]. The assimilation of flux observations can help determine 461 

parameter values and reduce their uncertainties, leading to reduced uncertainties in estimated 462 

carbon fluxes. However, many of these studies used data from a single site to constrain model 463 

parameters for a given PFT [e.g., Braswell et al., 2005; Knorr and Kattge, 2005; Mahadevan et 464 

al., 2008; Mo et al., 2008; Ricciuto et al., 2008]. Few studies used observations from multiple 465 

sites encompassing a range of climate and disturbance history for the parameter optimization of a 466 

given PFT. The high density and range of eddy flux measurements in the ChEAS region make it 467 

possible to assess the variability of parameters both within and across PFTs, and to produce 468 

model parameters that are representative of the PFTs.  469 

The large variability of most model parameters among PFTs confirmed the well-known 470 

ecologically different behaviors among PFTs. The large variability of εmax among PFTs is 471 
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generally consistent with the range shown by previous studies [e.g., Ruimy et al., 1994; Goetz & 472 

Prince, 1996; Gower et al., 1999; Heinsch et al., 2003], and is inconsistent with the assumption 473 

in some previous studies [e.g, Potter et al., 2007] that εmax is a constant regardless of PFT. As the 474 

magnitude of EVI can be smaller than fPAR, the direct use of EVI as an approximation for fPAR 475 

[e.g., Xiao et al., 2004; Potter et al., 2007; Mahadevan et al., 2008] can lead to substantial 476 

overestimation of εmax in optimization. Most PFTs exhibited negative λ values, indicating that Re 477 

is inversely proportional to aboveground biomass. Low-biomass, recently disturbed ecosystems 478 

may have higher litter, and thus have higher heterotrophic respiration and Re.  479 

The general consistency of most parameters among leave-one-out optimizations shows 480 

that most sites within a given PFT exhibited similar behavior. For a given PFT, different sites 481 

can have a range of stand age, disturbance history, microclimate, and edaphic properties, and 482 

thus have different parameter values. The estimated parameter values resulting from a single site 483 

does not encompass the full range of variability of parameter values within a PFT. The within-484 

PFT variability of parameters can be partly explained by the differences of stand age and 485 

disturbance history among the sites. For instance, stand age of evergreen forest sites varies from 486 

3 to 63 years. Mature Red Pine is a mature stand, while all other sites are recently disturbed 487 

young stands. The large within-PFT variability in stand age and associated aboveground biomass 488 

and disturbance history likely contribute to the large within-PFT variability in parameters of 489 

evergreen forests. The same can be said of the role of Willow Creek within the deciduous forests. 490 

By contrast, mixed forests are either mature (UMBS, WLEF) or old-growth (SWA) ecosystems 491 

with similar stand age, which likely leads to the similarity of optimized parameters within this 492 

PFT.  493 
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Many empirical or process-based ecosystem models use data from a single site to 494 

estimate the parameters of a given PFT [e.g., Raich et al., 1991; Mahadevan et al., 2008]. The 495 

large within-PFT variability of some model parameters indicates that it is inadequate to use data 496 

from a single site to estimate the parameters of a given PFT for regional applications. This 497 

traditional parameter estimation approach may not capture the variability of ecological and 498 

biophysical properties within a PFT, and could introduce biases to the resulting regional flux 499 

estimates. Ideally, observations from multiple sites encompassing a range of site conditions (e.g., 500 

stand age, disturbance history, and aboveground biomass) should be used for parameter 501 

estimation of a given PFT.  502 

The five factors controlling Re such as biomass and soil carbon can vary substantially 503 

within a PFT. To account for the spatial variability of Re within PFTs, we introduced 504 

aboveground biomass into the model. Re consists of autotrophic respiration (Ra) and 505 

heterotrophic respiration (Rh). Ra can be empirically modeled as a function of air temperature 506 

and tissue carbon (foliage, stem, roots), while Rh is often modeled as a function of substrate 507 

availability. For instance, maintenance respiration is modeled as a direct function of plant 508 

biomass while Rh is a function of soil carbon storage in TEM [Tian et al., 1999; Xiao et al., 509 

2009]. For forest ecosystems, aboveground biomass is also significantly related to stand age. 510 

Thus, our model can partly account for the variability of biomass and disturbance history within 511 

a PFT.  512 

Aboveground biomass, however, cannot account for the sizes of soil carbon pools and 513 

litterfall. Our results show that the inclusion of stand age significantly improves the performance 514 

of the model for estimating NEE for evergreen forests and deciduous forests. Thus the addition 515 

of stand age can improve the estimation of Re and thus NEE. However, the modified model with 516 
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stand age included for forested sites was not used to produce regional flux estimates because 517 

there is no spatially explicit information on stand age available for the ChEAS region. The 518 

development of regional stand age maps and their incorporation into modeling are expected to 519 

improve regional flux estimates.  520 

5.2. Influence of Parameter Variability and Land Cover Representation on Regional Flux 521 

Estimates 522 

Our results show that the variability of parameters within a PFT can result in considerable 523 

uncertainty in regional flux estimates. The estimated parameter values resulting from a single site 524 

do not encompass the full range of variability of parameter values within a given PFT. The 525 

annual fluxes based on the cross-site (or joint) optimization using flux observations from all sites 526 

were very close to the mean annual fluxes resulting from the model runs based on leave-one-out 527 

model optimizations, showing that for a given PFT, cross-site optimization using flux 528 

observations from all sites can lead to more robust flux estimates.  529 

The parameterization of ecosystem models for a given PFT is typically based on 530 

observations from a single site [e.g., Potter et al., 2007; Xiao et al., 2009]. The optimization of 531 

model parameters based on flux observations and data assimilation (or model-data fusion) 532 

techniques also typically use observations from a single site for a given PFT [e.g., Braswell et al., 533 

2005; Knorr and Kattge, 2005; Mahadevan et al., 2008; Mo et al., 2008]. Our results indicate that 534 

this type of parameterization or optimization can result in significant uncertainty in flux 535 

estimates; for a given PFT, observations from multiple sites should be used for the 536 

parameterization and optimization of ecosystem models to minimize the uncertainty of parameter 537 

variability on flux estimates. There are currently over 500 eddy flux towers over the globe, and 538 

these sites encompass a large range of ecosystem and climate types. The availability of flux 539 
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observations from these sites makes it possible to examine the variability of parameters within 540 

and across PFTs over broader spatial domains or other geographical regions. 541 

Our results show that land cover representation including land cover heterogeneity and 542 

the spatial resolution and accuracy of land cover maps can result in large uncertainties in 543 

regional flux estimates in heterogeneous regions, although such uncertainties could be much 544 

smaller in more homogeneous regions [Quaife et al., 2008]. The aggregation of 30m NLCD data 545 

to 1km spatial resolution results in the subgrid representation of PFT fractions within each 1km 546 

grid cell. The differences in regional fluxes obtained using these two land cover maps were 547 

substantial, demonstrating that land cover heterogeneity and the spatial resolution of land over 548 

maps can result in significant uncertainty to flux estimates. The MODIS land cover is based on 549 

moderate-resolution MODIS data, and cannot capture the spatial details and resolve the 550 

proportions of PFTs within each grid cell. Compared to NLCD land cover maps, the MODIS 551 

land cover map also fail to detect the substantial presence of wetlands that are ecologically 552 

distinct from upland forest ecosystems. In addition, 1km-MODIS is based on a global 553 

classification algorithm, while 30m-NLCD is based on 30m Landsat data and regional training 554 

sites. NLCD land cover maps, therefore, are likely to have higher classification accuracy than 555 

1km-MODIS. The considerable differences in regional flux estimates based on the NLCD and 556 

MODIS land cover maps demonstrate that regional flux estimates can be significantly affected 557 

by the accuracy of land cover maps and land cover heterogeneity. Our results also imply that 558 

intercomparison studies of different ecosystem models should consider the differences in the 559 

underlying land cover maps. Ideally, the same land cover map with the same spatial resolution 560 

should be used for model intercomparison studies. 561 
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One key remaining challenge is to produce gridded, probabilistic flux estimates based on 562 

the probability distribution functions (PDFs) of land cover and forest structure and the merging 563 

of uncertainties from input data and parameter PDFs, and to assess the importance of sources of 564 

uncertainty and the reduction of uncertainty. Bayesian approaches, Markov chain Monte Carlo 565 

(MCMC) methods in particular [e.g., Braswell et al., 2005], have been used to obtain posterior 566 

distributions of model parameters that combine information from the data and from assumed 567 

prior parameter distributions. The uncertainty of model parameters and other input data can be 568 

propagated through modeling to quantify the uncertainties of flux estimates. The large range of 569 

eddy flux measurements in the Upper Midwest region and MCMC make it promising to optimize 570 

LUE-based or process-based ecosystem models and to produce such gridded, probabilistic flux 571 

estimates. 572 

6. Conclusions 573 

We used eddy flux observations and a data assimilation approach to estimate the 574 

parameters of the simple Diagnostic Carbon Flux Model (DCFM) and examined the influence of 575 

parameter variability and land cover representation on regional flux estimates. Our results show 576 

that some model parameters vary not only across PFTs but also within a given PFT. The within-577 

PFT variability in parameters indicates that it is inadequate to use data from a single site to 578 

estimate the parameters of a given PFT for regional applications, and multiple sites 579 

encompassing a full range of site conditions (e.g., stand age, disturbance history, and climate) 580 

should be used. Our results show that parameter variability can result in substantial variability in 581 

regional flux estimates. Our results also demonstrate that land cover representation including 582 

land cover heterogeneity and the spatial resolution and accuracy of land cover maps can 583 
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introduce considerable uncertainty to regional flux estimates. In heterogeneous, complex regions, 584 

detailed land-cover maps are essential for accurate estimation of regional carbon fluxes.  585 

 586 

Acknowledgements:  587 

This study was supported by the National Aeronautics and Space Administration (NASA). 588 

Terrestrial Ecology Program. Data collection was supported by both NASA’s Terrestrial Ecology 589 

Program and the Department of Energy’s Office of Biological and Environmental Research, 590 

Terrestrial Carbon Program and National Institute for Climatic Change Research. We thank T. 591 

Hilton for assistance with data assimilation and A. Desai for helpful discussion. We also thank J. 592 

Chen, K. Cherrey, P. Curtis, A. Desai, C. Gough, and A. Noormets for contributions to the flux 593 

observations used in this study. We also thank the two anonymous reviewers and D.D. Baldocchi 594 

for constructive comments on earlier versions of the manuscript. 595 

 596 

References:  597 

Ardia, D. (2009), DEoptim: Differential Evolution Optimization in R. R package version 1.3-3. 598 

http://CRAN.R-project.org/package=DEoptim.  599 

Baldocchi, D. D., B. B. Hicks, and T. P. Meyers (1988), Measuring biosphere-atmosphere 600 

exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 601 

1331-1340. 602 

Boelman, N. T., M. Stieglitz, H. M. Rueth, M. Sommerkorn, K. L. Griffin, G. R. Shaver, and J. 603 

A. Gamon (2003), Response of NDVI, biomass, and ecosystem gas exchange to long-term 604 

warming and fertilization in wet sedge tundra, Oecologia, 135, 414-421.  605 



28 

 

Braswell, B. H., B. Sacks, E. Linder, and D. S. Schimel (2005), Estimating ecosystem process 606 

parameters by assimilation of eddy flux observations of NEE, Global Change Biol., 11, 335-607 

355. 608 

Butler, M. P., K. J. Davis, A.S. Denning, and S.R. Kawa (2010) Using continental observations 609 

in global atmospheric inversions of CO2: North American carbon sources and sinks. Tellus B, 610 

62B, 550-572, doi:10.1111/j.1600-0889.2010.00501.x. 611 

Chapin, F. S., P. A. Matson, and H. A. Mooney (2002), Principles of Terrestrial Ecosystem 612 

Ecology, published by Birkhäuser, 436 pages.  613 

Chen, J., K. J. Davis, and T. P. Meyers (2008), Ecosystem-atmosphere carbon and water cycling 614 

in the upper Great Lakes Region, Agri. For. Meteor., 148, 155-157. 615 

Cook, B. D., K. J. Davis, W. Wang, A. Desai, B. W. Berger, R. M. Teclaw, J. G. Martin, P. V. 616 

Bolstad, P. S. Bakwin, C. Yi, and W. Heilman (2004), Carbon exchange and venting 617 

anomalies in an upland deciduous forest in northern Wisconsin, USA, Agri. For. Meteor., 618 

126, 271-295. 619 

Cook, B. D., P. V. Bolstad, E. Næsset, R. S. Anderson, S. Garrigues, J. T. Morisette, J. Nickeson, 620 

and K. J. Davis (2009), Using LiDAR and quickbird data to model plant production and 621 

quantify uncertainties associated with wetland detection and land cover generalizations, 622 

Remote Sens. Environ., 113, 2366–2379. 623 

Davis, K. J., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw, and J. G. Isebrands 624 

(2003), The annual cycles of CO2 and H2O exchange over a northern mixed forest as 625 

observed from a very tall tower, Global Change Biol., 9, 1278-1293. 626 



29 

 

Davis, K. J. (2008), Integrating Field Measurements with Flux Tower and Remote Sensing 627 

Data.  In Field Measurements for Landscape-Scale Forest Carbon Monitoring, Hoover, Coeli 628 

M (Ed.) 2008, XVIII, 242 p. 20 illus., Hardcover. ISBN: 978-1-4020-8505-5. 629 

Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey (2005), Comparing net 630 

ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper 631 

Midwest, USA, Agri. For. Meteor., 128, 33-55. 632 

Desai, A. R., A. Noormets, P. V. Bolstad, J. Chen, B. D. Cook, K. J. Davis, E. S. Euskirchen, C. 633 

Gough, J. G. Martin, D. M. Ricciuto, H. P. Schmid, J. Tang, and W. Wang (2008), Influence 634 

of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: 635 

implications for regional scaling, Agri. For. Meteor., 148, 288-308. 636 

Falge, E., D. Baloocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. 637 

Ceulemans, R. Clement, H. Dolman, A. Granier, P. Gross, T. Grünwald, D. Hollinger, N. -O. 638 

Jensen, G. Katul, P. Keronen, A. Kowalski, C. T. Lai, B. E. Law, T. Meyers, J. Moncrieff, E. 639 

Moors, J. W. Munger, K. Pilegaard, Ü Rannik,C. Rebmann, A. Suyker, J. Tenhunen, K. Tu, 640 

S. Verma, T. Vesala, K. Wilson, and S. Wofsy (2001), Gap filling strategies for defensible 641 

annual sums of net ecosystem exchange, Agri. For. Meteor., 107, 43-69. 642 

Fensholt, R., and I. Sandholt (2003), Derivation of a shortwave infrared water stress index from 643 

MODIS near- and shortwave infrared data in a semiarid environment, Remote Sens. Environ., 644 

87, 111-121.  645 

Foley, S., R. DeFries, G. P. Anser, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. 646 

Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, 647 

C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder (2005), Global 648 

consequences of land use, Science, 309, 570– 574, doi:10.1126/science.1111772. 649 



30 

 

Friedl, M. A., D. K. McIver, J. C. F. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. 650 

Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf (2002), 651 

Global land cover mapping from MODIS: algorithms and early results, Remote Sens. 652 

Environ., 83, 287-302. 653 

Gao, B. C. (1996), NDWI - A normalized difference water index for remote sensing of 654 

vegetation liquid water from space, Remote Sens. Environ., 58, 257-266.  655 

Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest 656 

stands, Agri. For. Meteor., 78, 149–179. 657 

Gough, C. M., C. S. Vogel, H. P. Schmid, H.-B. Su, and P. S. Curtis (2008), Multi-year 658 

convergence of biometric and meteorological estimates of forest carbon storage, Agric. For. 659 

Meteorol. 148, 158–170. 660 

Gower, S. T., C. J. Kucharik, and J. M. Norman (1999), Direct and indirect estimation of leaf 661 

area index, f (APAR), and net primary production of terrestrial ecosystems, Remote Sens. 662 

Environ., 70, 29–51. 663 

Heinsch, F. A., M. Reeves, P. Votava, S. Kang, C. Milesi, M. Zhao, J. Glassy, W. M. Jolly, R. 664 

Loehman, C. F. Bowker, J. S. Kimball, R. R. Nemani, and S. W. Running (2003), User’s 665 

Guide – GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm, Version 666 

2.0, December 2, 2003.  667 

Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan (2004), Development of a 2001 National 668 

Landcover Database for the United States, Photogram. Eng. Remote Sens., 70, 829-840. 669 

Huete, A. R., H. Q. Liu, K. Batchily, and W. vanLeeuwen (1997), A comparison of vegetation 670 

indices global set of TM images for EOS-MODIS, Remote Sens. Environ., 59, 440-451. 671 



31 

 

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira (2002), Overview of 672 

the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. 673 

Environ., 83, 195-213. 674 

Hurtt, G. C., S. W. Pacala, P. R. Moorcroft, J. Caspersen, E. Shevliakova, R. A. Houghton, and B. 675 

Moore (2002), Projecting the future of the US carbon sink, Proc. Natl. Acad. Sci. U.S.A., 99, 676 

1389-1394. 677 

Jackson, T. J., D. Chen, M. Cosh, F. Li, M. Anderson, C. Walthall, P. Doriaswamy, and E. R. 678 

Hunt (2004), Vegetation water content mapping using Landsat data derived normalized 679 

difference water index fro corn and soybeans, Remote Sens. Environ., 92, 475-482. 680 

Jung, M., M. Reichstein, and A. Bondeau (2009), Towards global empirical upscaling of 681 

FLUXNET eddy covariance observations: validation of a model tree ensemble approach 682 

using a biosphere model, Biogeosciences, 6, 2001-2013. 683 

Kalnay, E., M., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, 684 

G. White, J. Wollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, 685 

C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph (1996), The 686 

NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470, 1996.   687 

Knorr, W., and J. Kattge (2005), Inversion of terrestrial ecosystem model parameter values 688 

against eddy covariance measurements by Monte Carlo sampling, Global Change Biol., 11, 689 

1333-1351.  690 

Landsberg, J. J., and R. H. Waring (1997), A generalised model of forest productivity using 691 

simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. 692 

Manage., 95, 209–228. 693 



32 

 

Lloyd, J., and J. A. Taylor (1994), On the temperature dependence of soil respiration, Funct. 694 

Ecol., 8, 315-323.  695 

Mahadevan, P., S. C. Wofsy, D. M. Matross, X. Xiao, A. L. Dunn, J. C. Lin, C. Gerbig, J. W. 696 

Munger, V. Y. Chow, and E. W. Gottlieb (2008), A satellite-based biosphere 697 

parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and 698 

Respiration Model (VPRM), Global Biogeochem. Cycles, 22, GB2005, 699 

doi:10.1029/2006GB002735. 700 

Mo, X., J. M. Chen, W. Ju, and T. A. Black (2008), Optimization of ecosystem model 701 

parameters through assimilating eddy covariance flux data with an ensemble Kalman filter, 702 

Ecol. Model., 217, 157-173. 703 

Moffat, A. M., D. Papale, M. Reichstein, D. Y. Hollinger, A. D. Richardson, A. G. Barr, C. 704 

Beckstein, B. H. Braswell, G. Churkina, A. R. Desai, E. Falge, J. H. Gove, M. Heimann, D. F. 705 

Hui, A. J. Jarvis, J. Kattge, A. Noormets, and V. J. Stauch (2007), Comprehensive 706 

comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agri. For. 707 

Meteor., 147, 209-232, 10.1016/j.agrformet.2007.08.011. 708 

Monteith, J. (1972), Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 709 

747-766. 710 

Monteith, J. (1977), Climate and efficiency of crop production in Britain, Philosophical 711 

Transactions of the Royal Society of London, Ser. B, 277-294. 712 

Myneni, R. B., J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. 713 

Alexeyev, and M. K. Hughes (2001), A large carbon sink in the woody biomass of northern 714 

forests, Proc. Natl. Acad. Sci. U.S.A., 98, 14784-14789. 715 



33 

 

Noormets, A., A. R. Desai, B. D. Cook, E. S. Euskirchen, D. M. Ricciuto, K. J. Davis, P. V. 716 

Bolstad, H. P. Schmid, C. V. Vogel, E. V. Carey, H. B. Su, and J. Chen (2008), Moisture 717 

sensitivity of ecosystem respiration: comparison of 14 forest ecosystems in the Upper Great 718 

Lakes Region, USA. Agri. For. Meteor., 148, 216-230. 719 

Persson, P., K. Hall-Könyves, G. Sjöström, and S. Pinzke (1993), NOAA/AVHRR data for crop 720 

productivity estimation in Sweden, Adv. Space Res., 13, 111-116.  721 

Pinker, R. T., O. Laszlo, J. D. Tarpley, and K. Mitchell (2002), Geostationary satellite 722 

parameters for surface energy balance, Adv. Space Res., 30, 2427–2432. 723 

Potter, C., S. Klooster, A. Huete, and V. Genovese (2007), Terrestrial carbon sinks for the United 724 

States predicted from MODIS satellite data and ecosystem modeling, Earth Interactions, 11, 725 

1-21.  726 

Price, K. V., R. M. Storn, and J. A. Lampinen (2006), Differential Evolution - A Practical 727 

Approach to Global Optimization. Springer-Verlag. ISBN 3540209506.  728 

Prince, S. D., and S. N. Goward (1995), Global primary production: a remote sensing approach, 729 

J. Biogeog., 22, 815-835. 730 

Quaife, T., S. Quegan, M. Disney, P. Lewis, M. Lomas, and F. I. Woodward (2008), Impact of 731 

land cover uncertainties on estimates of biospheric carbon fluxes, Global Biogeochem. 732 

Cycles, 22, GB4016, doi:10.1029/2007GB003097. 733 

Raich, J. W., E. Rastetter, E., J. Melillo, D. Kicklighter, P. Steudler, B. Peterson, A. Grace, B. 734 

Moore III, and C. Vorosmarty (1991), Potential net primary productivity in South America: 735 

application of a global model, Ecol. App., 7, 444-460.  736 



34 

 

Reich, P., D. Turner, and P. Bolstad (1999), An approach to spatially distributed modeling of net 737 

primary production (NPP) at the landscape scale and its application in validation of EOS 738 

NPP products, Remote Sens. Environ., 70, 69–81, doi:10.1016/S0034-4257(99)00058-9. 739 

Ricciuto, D. M., M. P. Butler, K. J. Davis, B. D. Cook, P. S. Bakwin, A. Andrews, and R. M. 740 

Teclaw (2008), Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a 741 

northern Wisconsin forest using a Bayesian model calibration, Agri. For. Met., 148, 309-327.  742 

Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto (2004), A 743 

continuous satellite-derived measure of global terrestrial primary production, BioScience, 54, 744 

547-560. 745 

Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net 746 

primary production from remotely sensed data, J. Geophys. Res., 99, 5263–5283.  747 

Ruimy, A., G. Dedieu, and B. Saugier (1996), TURC: a diagnostic model of continental gross 748 

primary productivity and net primary productivity, Global Biogeochem. Cycles, 10, 269-285. 749 

Schmid, H. P. (1994), Source areas for scalars and scalar fluxes, Bound. –Layer Meteor., 67, 750 

293-318. 751 

SOCCR (2007), The First State of the Carbon Cycle Report (SOCCR): the North American 752 

Carbon Budget and Implications for the Global Carbon Cycle, eds King AW, Dilling L, 753 

Zimmerman GP, Fairman DM, Houghton RA, Marland GA, Rose AZ, Wilbanks TJ (US 754 

Climate Change Science Program, Washington, DC). 755 

Su, H. –B., H. P. Schmid, C. S. B. Grimmond, C. S. Vogel, and P. S. Curtis (2008), An 756 

assessment of observed vertical flux divergence in long-term eddy-covariance measurements 757 

over two Midwestern forest ecosystems, Agri. For. Meteor., 148, 186-205. 758 



35 

 

Sulman, B. N., A. R. Desai, N. Z. Saliendra, P. M. Lafleur, L. B. Flanagan, O. Sonnentag, D. S. 759 

Mackay, and A. G. Barr (2010) CO2 fluxes at northern fens and bogs have opposite responses 760 

to inter-annual fluctuations in water table. Geophys. Res. Lett., 37, L19702, 761 

doi:10.1029/2010GL44018. 762 

Sun, G., P. Caldwell, A. Noormets, S. G. McNulty, E. Cohen, J. Moore Myers, J.-C. Domec, E. 763 

Treasure, Q. Mu, J. Xiao, R. John, and J. Chen (2011), Upscaling Key Ecosystem Functions 764 

across the Conterminous United States by a Water-Centric Ecosystem Model, J. Geophys. 765 

Res., doi:10.1029/2010JG001573, in press. 766 

Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich (1999), The 767 

sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 768 

in the United States, Tellus, 51B, 414-452.  769 

Tucker, C. J., C. L. Vanpraet, M. J. Sharman, and G. Van Ittersum (1985), Satellite remote 770 

sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984, Remote 771 

Sens. Environ., 17, 233-249.  772 

Vermote, E. F., and A. Vermeulen (1999), MODIS Algorithm Technical Background Document 773 

– Atmospheric Correction Algorithm: Spectral Reflectances (MOD09), Version 4.0. 774 

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf. 775 

Veroustraete, F., H. Sabbe, and H. Eerens (2002), Estimation of carbon mass fluxes over Europe 776 

using the C-Fix model and Euroflux data, Remote Sens. Environ., 83, 376-399. 777 

Wang, W., K. J. Davis, B. D. Cook, M. P. Butler, and D. M. Ricciuto (2006), Decomposing CO2 778 

fluxes measured over a mixed ecosystem at a tall tower and extending to a region: A case 779 

study, J. Geophys. Res., 111, G02005, doi:10.1029/2005JG000093. 780 



36 

 

Xiao, J. Q. Zhuang, D. D. Baldocchi, B. E. Law, A. D. Richardson, J. Chen, R. Oren, G. Starr, A. 781 

Noormets, S. Ma, S. B. Verma, S. Wharton, S. C. Wofsy, P. V. Bolstad, S. P. Burns, D. R. 782 

Cook, P. S. Curtis, B. G. Drake, M. Falk, M. L. Fischer, D. R. Foster, L. Gu, J. L. Hadley, D. 783 

Y. Hollinger, G. G. Katul, M. Litvak, T. A. Martin, R. Matamala, S. McNulty, T. P. Meyers, 784 

R. K. Monson, J. W. Munger, W. c. Oechel, K. T. Paw U, H. P. Schmid, R. L. Scott, G. Sun, 785 

A. E. Suyker, and M. S. Torn (2008), Estimation of net ecosystem carbon exchange of the 786 

conterminous United States by combining MODIS and AmeriFlux data, Agri. For. Meteor., 787 

148, 1827-1847, doi:10.1016/j.agrformet.2008.06.015.  788 

Xiao, J., Q. Zhuang, E. Liang, A. D. McGuire, A. Moody, D. W. Kicklighter, X. Shao, and J. M. 789 

Melillo (2009), Twentieth century droughts and their impacts on terrestrial carbon cycling in 790 

China, Earth Interactions, 13, 010, 1-31, DOI: 10.1175/2009EI275.1. 791 

Xiao, J., Q. Zhuang, B. E. Law, J. Chen, D. D. Baldocchi, D. R. Cook, R. Oren, A. D. 792 

Richardson, S. Wharton, S. Ma, T. A. Martin, S. B. Verma, A. E. yker, R. L. Scott, R. K. 793 

Monson, M. Litvak, D. Y. Hollinger, G. Sun, K. J. Davis, P. V. Bolstad, S. P. Burns, P. S. 794 

Curtis, B. G. Drake, M. Falk, M. L. Fischer, D. R. Foster, L. Gu, J. L. Hadley, G. G. Katul, R. 795 

Matamala, S. McNulty, T. P. Meyers, J. W. Munger, A. Noormets, W. C. Oechel, K. T. Paw 796 

U, H. P. Schmid, G. Starr, M. S. Torn, and S. C. Wofsy (2010), A continuous measure of 797 

gross primary productivity for the conterminous U.S. derived from MODIS and AmeriFlux 798 

data, Remote Sens. Environ., 114, 576-591, doi:10.1016/j.rse.2009.10.013. 799 

Xiao, J., Q. Zhuang, B. E. Law, D. D. Baldocchi, J. Chen, A. D. Richardson, J. M. Melillo, K. J. 800 

Davis, D. Y. Hollinger, S. Wharton, R. Oren, A. Noormets, M. L. Fischer, S. B. Verma, D. R. 801 

Cook, G. Sun, S. McNulty, S. C. Wofsy, P. V. Bolstad, S. P. Burns, P. S. Curtis, B. G. Drake, 802 

M. Falk, D. R. Foster, L. Gu, J. L. Hadley, G. G. Katul, M. Litvak, S. Ma, T. A. Martin, R. 803 



37 

 

Matamala, T. P. Meyers, R. K. Monson, J. W. Munger, W. C. Oechel, K. T. Paw U, H. P. 804 

Schmid, R. L. Scott, G. Starr, A. E. Suyker, and M. S. Torn, M.S. (2011), Assessing net 805 

ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance 806 

flux measurements and satellite observations, Agri. For. Meteor., 151, 60-69, 807 

doi:10.1016/j.agrformet.2010.09.002. 808 

Xiao, X., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Zhang, and B. Moore III (2004), 809 

Satellite-based modeling of gross primary production in an evergreen needleleaf forest, 810 

Remote Sens. Environ., 89, 519-534.  811 

Zhang, L., B. K. Wylie, L. Ji, T. G. Gilmanov, L. L. Tieszen, and D. M. Howard (2011), 812 

Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources, J. Geophys. 813 

Res., 116, G00J03, doi:10.1029/2010JG001504. 814 

Zhao, M., F. A. Heinsch, R. R. Nemani, and S. W. Running (2005), Improvements of the 815 

MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 816 

95, 164–175. 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 



38 

 

Figure captions: 827 

Figure 1. The study region and the location of eddy covariance flux towers. Symbols are the 828 

eddy flux sites. The shaded area is the Northern Forests ecoregion across northern Wisconsin 829 

(WI) and Michigan (MI). The dotted line stands for state boundaries.  830 

Figure 2. Land cover maps used for the study region: (a) 30m NLCD (30m-NLCD); (b) 1km 831 

NLCD (1km-NLCD); (c) 1km MODIS (1km-MODIS); (d) total area of each plant functional 832 

type (PFT): evergreen forests (EF), deciduous forests (DF), shrublands (Sh), woody wetlands 833 

(WW), and herbaceous wetlands (HW) for each land cover map. Other land cover types (e.g., 834 

urban, croplands, and barren) are shown in gray.  835 

Figure 3. Mean annual carbon fluxes for the study region over the period 2001-2007: (a) annual 836 

GPP; (b) annual NEE. The units are g C m
-2

 yr
-1

. The estimation of these carbon fluxes is based 837 

on the 30m NLCD land cover map (30m-NLCD). 838 

Figure 4. Comparison of mean annual GPP over the period 2001-2006 for the ChEAS region: (a) 839 

our GPP estimate from this study; (b) MODIS GPP product; (c) EC-MOD GPP. The units are g 840 

C m
-2

 yr
-1

. 841 

Figure 5. Comparison of mean annual NEE over the period 2001-2006 for the ChEAS region: (a) 842 

our estimate from this study; (b) EC-MOD NEE. The units are g C m
-2

 yr
-1

. 843 

Figure 6. Regional annual carbon fluxes averaged over the period 2001-2007 for each plant 844 

functional type (PFT) based on different land cover representations (30m-NLCD, 1km-NLCD, 845 

and 1km-MODIS): (a) annual GPP; (b) annual NEE. The units are Tg C yr
-1

. The PFTs are: 846 

evergreen forests (EF), deciduous forests (DF), mixed forests (MF), shrublands (Sh), woody 847 

wetlands (WW), and herbaceous wetlands (HW). 848 
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Figure 7. Variability of regional annual carbon fluxes averaged over the period 2001-2007 849 

resulting from parameter variability based on different land cover representations: annual GPP (a) 850 

and NEE (b) for evergreen forests (EF); annual GPP (c) and NEE (d) for deciduous forests (DF); 851 

annual GPP (e) and NEE (f) for mixed forests (MF); total annual GPP (g) and NEE (h) of all 852 

PFTs (evergreen forests, deciduous forests, mixed forests, shrublands, woody wetlands, and 853 

herbaceous wetlands) over the entire region. The units are Tg C yr
-1

. The diamond symbol stands 854 

for fluxes based on parameters derived from cross-site (or joint) optimization using flux 855 

observations from all sites within each PFT. Open circle stands for fluxes averaged from model 856 

runs with parameters derived from leave-one-out model optimization, and the error bars on the 857 

open circles represent the standard deviation (or variability) of the regional annual fluxes from 858 

the model runs.  859 
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Table 1. Location and site characteristics of eddy covariance flux sites in the Chequamegon Ecosystem-Atmosphere Study (ChEAS) 

region across northern Wisconsin (WI) and Upper Peninsula of Michigan (MI).  

PFT Site ID State Lat Lon Data period 
Stand age 
(yrs) Dominant cover 

Reference 

Evergreen 

forests 

(EF) 

 

Intermediate Red Pine IRP WI 46.687 -91.153 2003 30 Red pine Noormets et al., 2008 

Mature Red Pine MRP WI 46.739 -91.166 2002-2005 70 Red pine, aspen Noormets et al., 2008 

Red Pine Clearcut RPC WI 46.649 -91.069 2005 7 Red pine Noormets et al., 2008 

Young Jack Pine YJP WI 46.619 -91.081 2004-2005 22 Jack pine Noormets et al., 2008 

Young Red Pine YRP WI 46.619 -91.081 2002 17 Red pine, jack pine Noormets et al., 2008 

          

 

Deciduous 
forests 

(DF) 

 

Intermediate Hardwood IH WI 46.730 -91.233 2003 26 Aspen Noormets et al., 2008 

Riley Creek RC WI 45.910 90.116 2005-2006 10 Aspen This study 
Thunder Creek TC WI 45.671 90.053 2005-2006 7 Aspen This study 

Willow Creek WC WI 45.806 -90.080 2000-2006 70 Sugar maple, basswood, green ash Cook et al., 2004 

Young Hardwood Clearcut YHC WI 46.722 -91.252 2002 13 Aspen, red maple Noormets et al., 2008 

          

Mixed forests 

(MF) 

 

 

Park Falls/WLEF WLEF WI 45.946 -90.272 2000-2005 ~45* Northern hardwoods, aspen Davis et al., 2003 

Sylvania Wilderness Area SWA MI 46.242 -89.348 2001-2006 

200 Eastern hemlock, sugar maple, 

birch 

Desai et al., 2005 

University of Michigan 

Biological Station UMBS MI 45.560 -84.714 2000-2003 

79 Aspen, white pine, red oak, sugar 

maple 

Gough et al., 2008 

          

Shrublands 

(Sh) Pine Barren 1 PB1 WI 46.625 -91.298 2002-2003 

 Sweet fern, black cherry, willow, 

red pine 

Noormets et al., 2008 

          

Woody 

wetlands 

(WW) Lost Creek LC WI 46.083 -89.979 2001-2006 

 

 

45 Alder-willow shrubs 

 

Sulman et al., 2010 

          

Herbaceous 

wetlands 

(HW) 

Wilson Flowage WF WI 45.817 90.172 2005-2006  Sedges and marsh grass Sulman et al., 2010 

South Fork SF WI 45.925 90.131 2005-2006 

 Sphagnum bog with Labrador Tea 

and LeatherLeaf 

Sulman et al., 2010 

*
The complexity of the WLEF flux footprint [e.g. Desai et al., 2008] makes it difficult to assign a single stand age.  This value should 

be viewed with caution. 
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Table 2. Values of parameters associated with the temperature scalar for each plant 

functional type (PFT). These parameters are fixed in parameter estimation.  

Parameter Tmin 

(°C) 
Topt,min 

(°C) 
Topt,max 

(°C) 
Tmax 

(°C) 
Evergreen forests (EF) -1.0 17.0 30.0 34.0 

Deciduous forests (EF) 0 17.0 30.9 34.0 

Mixed forests (MF) -0.5 17.0 30.5 34.0 

Shrublands (Sh) 1.0 15.1 35.1 44.0 

Woody wetlands (WW) 0 19.1 33.1 38.0 

Herbaceous wetlands (HW) 0 13.0 32.7 38.0 
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Table 3. Estimated parameter values for each plant functional type (PFT). 

 

PFT εmax 
(g C m-2 

MJ-1 

APAR) 

α β '

refR   

(g C m-2 

day-1) 

γ  
(g C m-

2 day-1) 

λ E0 
(°C) 

Evergreen forests 

(EF) 

2.75 -0.30 1.85 13.14 -0.099 0.71 68.78 

Deciduous forests 

(DF) 

2.39 -0.47 1.85 0 0.011 0.47 142.77 

Mixed forests 

(MF) 

0.71 -0.31 1.80 2.07 -0.005 -0.01 277.80 

Shrubland (Sh) 1.24 -0.40 1.85 14.43 -0.143 0.07 355.95 

Woody wetland 

(WW) 

0.95 -0.31 1.83 4.40 -0.024 0.18 214.27 

Herbaceous 

wetland (HW) 

2.75 -0.30 1.85 0 0.003 0.78 77.26 
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Table 4. Leave-one-out parameter estimation and model verification for three plant 

functional types (PFTs): evergreen forests, deciduous forests, and mixed forests. The 

estimated parameter values and statistics (slope, intercept, R
2
, and the number of days of 

observations – N) for the correlation between predicted and observed net ecosystem 

exchange (NEE) are given here.  

(a) Evergreen forests (EF) 

Site εmax 

(g C m-2 

MJ-1 

APAR) 

α β '

refR
 

(g C m-2 

day-1) 

γ  λ 
(g C 

m-2 

day-1) 

E0 
(°C) 

Slope Intercept 
(g C m-2 

day-1) 

R
2 

N 

IRP 2.75 -0.30 1.85 13.12 -0.099 0.71 69.02 0.55 -0.40 0.04 4 

MRP 1.15 -0.16 1.48 0.011 0.002 0.20 283.72 0.41 0.31 0.49 276 

RPC 2.75 -0.30 1.85 16.85 -0.123 0.71 68.75 0.46 0.34 0.57 51 

YJP 2.75 -0.30 1.85 15.77 -0.116 0.62 93.21 0.99 -2.89 0.48 131 

YRP 2.05 0 1.85 13.33 -0.010 0.73 60.65 0.44 -1.36 0.66 97 

(b) Deciduous forests (DF) 

Site εmax 

(g C m-2 

MJ-1 

APAR) 

α β '

refR
 

(g C m-2 

day-1) 

γ  λ  

(g C m-2 

day-1) 

E0 
(°C) 

Slope Intercept 
(g C m-2 

day-1) 

R
2 

N 

IH 2.70 -0.52 1.97 0 0.010 0.57 102.07 0.37 -1.73 0.61 20 

RC 1.93 -0.42 1.83 0 0.013 0.37 181.51 -0.13 2.21 0.16 20 

TC 2.01 -0.40 1.77 0 0.013 0.37 180.63 0.02 2.14 0.00 21 

WC 0.61 -0.65 1.66 0 0.003 0.04 500.00 0.21 0 0.66 518 

YHC 2.36 -0.55 1.92 0 0.009 0.48 105.07 1.02 -2.40 0.33 68 

(c) Mixed forests (MF) 

Site εmax 

(g C m-2 

MJ-1 

APAR) 

α β '

refR
 

(g C m-2 

day-1) 

γ  λ  

(g C m-2 

day-1) 

E0 
(°C) 

Slope Intercept 
(g C m-2 

day-1) 

R
2 

N 

SWA 0.65 -0.34 1.86 2.61 -0.009 -0.06 309.85 0.44 0.12 0.44 390 

UMBS 0.71 -0.31 1.79 2.07 -0.005 -0.01 277.81 0.56 0.02 0.55 110 

WLEF 0.90 -0.35 1.74 7.01 -0.045 0.06 230.37 0.61 -0.47 0.37 771 
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